Benchmark Results

This document was generated by browsing, searching, or listing all entities on CPALMS - <u>www.cpalms.org</u>

Benchmark#	Description	Remarks/Example	Idea/Standard	Subject	Grade	Knowledge/	Cog /Cor Rat
MA.6.A.1.1	Explain and justify procedures for multiplying and dividing fractions and decimals.	1 1 7/3	BIG IDEA 1	1	6	Algebra	Lev Bas App of S Cor

		solution.					
		Pizza Parlor Scenarios					
		Example 2: A cook made four pizzas that had 3/5 of a package of mushrooms on each. How many packages of mushrooms were used?					
		Example 3: Sue ate some pizza. 2/3 of a pizza is left over. Jim ate 3/4 of the left over pizza. How much of a whole pizza did Jim eat?					
		Example 4: A party dessert pizza measures 2/3 of a yard by 3/4 of a yard. How much of a square yard is the party dessert pizza?					
		Example 5: There was 4/5 of a pound of pizza dough leftover in the freezer from the previous day. The cook thawed out 3/8 of the leftover dough. How much of a pound of dough did the cook thaw?					
	Multiply and						
MA.6.A.1.2	divide fractions and decimals efficiently.	Students may learn techniques such as mental math or specified algorithms to perform these operations.	BIG IDEA 1	1	6	Algebra	Lev Rec
MA.6.A.1.3	Solve real- world problems involving multiplication		BIG IDEA 1	1	6	Algebra	Lev Stra Thii Con
		f Example: How many quarter- pound hamburgers can be made					Rea

	decimals.	from 3 1/2 pounds of ground beef?					
MA.6.A.2.1	-	Example: Four items cost \$5.00 and all items are the same price. Explain how to find the cost for 9 items.	BIG IDEA 2	1	6	Algebra	Lev Stra Thir Con Rea
MA.6.A.2.2	Interpret and compare ratios and rates.	Example: Jessica made 8 out of 24 free throws. Bob made 5 out of 20 free throws. Who has the highest free throw ratio? Ratios may be represented in various forms such as simple drawings or multiplication tables.	BIG IDEA 2	1	6	Algebra	Lev Bas App of S Con
MA.6.A.3.1	Write and evaluate mathematical expressions that correspond to given situations.	Example: A plant is 3 cm high on Day 1. Each day after that the plant grows 2 cm taller. Assume that the plant grows at the same	BIG IDEA 3	1	6	Algebra	Lev Bas App of S Con
MA.6.A.3.2	Write, solve, and graph one- and two- step linear equations and inequalities.	The context should include patterns, models and relationships. Students should explore how "greater than or equal to" and strictly "greater than" are similar and different.	BIG IDEA 3	1	6	Algebra	Lev Bas App of S Con

MA.6.A.3.3	Wash			1	6	Algebra	Lev Bas: App of S Con
MA.6.A.3.4	given a formula.	? 79 Example: The pressure exerted by a solid object on a solid surface can be calculated by using the formula, , where the variables P, F, and A represent pressure, force, and area respectively. A newly refinished wood floor can withstand a pressure of up to 40 pounds per square inch without sustaining damage. A 120 pound woman with high heels and a 240 pound man with flat heels each enter this room. Assume that at some point all of their weight is supported equally by the heels of both of their shoes. Given that each of the woman's heels occupies an area of 0.25 in ² and each of the man's heels occupies an area of 12 in ² , find out each person's potential for causing damage to the wood floor. Justify your answer.	BIG IDEA 3	1	6	Algebra	Lev Bas App of S Con

		If a 15,000 pound African elephant with feet that each has an area of 100 in ² were to stand on this floor, would it cause damage to the floor? Explain your answer. Compare the three cases with each other.					
MA.6.A.3.5	Apply the Commutative, Associative, and Distributive Properties to show that two expressions are equivalent.	Example: Is 7(m+2) the same as 7m + 2 or 7m + 14? Explain your choice.	BIG IDEA 3	1	6	Algebra	Lev Bas App of S Con
MA.6.A.3.6	analyze tables, graphs, and equations to describe linear functions and other simple relations using both common	Example 1: Each unicycle made needs 1 wheel. Explain why $w=u$ where w is the number of wheels and u is the number of unicycles describes this relationship. Example 2: Each bicycle made needs 2 wheels. Explain why w=2b where w is the number of wheels and b is the number of bicycles describes this relationship. Example 3: Each tricycle made needs 3 wheels. Explain why w=3t where w is the number of wheels and t is the number of tricycles describes this relationship. Example 4: Below is a graph of the relationships in Examples 2 and 3. Explain why one of the lines is steeper than the other line.	BIG IDEA 3	1	6	Algebra	Lev Stra Thi Con Rea

		What would the graph of w=u look like?					
MA.6.A.5.1		Example: John scored 75% on a test and Mary has 8 out of 12 correct on the same test. Each test	Number and Operations	1	6	Algebra	Leve Basi App of S Con
MA.6.A.5.2	percents, including		Number and Operations	1	6	Algebra	Leve Basi App of S Con
MA.6.A.5.3	computations with fractions, decimals, and	Example: Amy bought 5 notebooks at \$3.61 each. She estimated how much she needs to pay and gave the cashier \$15. Is Amy's estimation appropriate? Explain your reasoning.	Number and Operations	1	6	Algebra	Leve Basi App of S Con

	reasonableness						
	of the results.						
MA.6.G.4.1	Understand the concept of Pi, know common estimates of Pi (3.14; 22/7) and use these values to estimate and calculate the circumference and the area of circles.	Using various circular objects, students determine that the ratio of circumference to diameter approximates the value of Pi.	Geometry and Measurement	1	6	Geometry	Lev Bas App of S Con
MA.6.G.4.2	dimensional figures, including non- rectangular figures (such	Example: Students see that the formula for the area of a circle is plausible by decomposing a circle into a number of wedges and rearranging them into shapes that approximates a parallelogram. Example: Students might trace their foot on a piece of grid paper and use the full squares and the partial squares to estimate the area of the bottom of their foot.	Geometry and Measurement	1	6	Geometry	Lev Bas App of S Con
MA.6.G.4.3	missing dimension of a plane figure or prism given its area or volume and some of the dimensions, or determine the area or volume given the dimensions.	Example: The volume of a rectangular prism is 112 cubic cm. The length is 7 cm, and the height is 8 cm. What is the depth of the prism?	Measurement	1	6	Geometry	Lev Bas App of S Con

		additional carpet that will need to be purchased to cover the floor. $\prod_{\sigma \in \sigma}$					
MA.6.S.6.1	Determine the measures of central tendency (mean, median, mode) and variability (range) for a given set of data.	Students should make frequency tables for numerical or categorical data, grouping data in different ways to investigate how different groupings describe the data. This is the first time in 2007 Florida mathematics standards that students are expected to use mean, median, mode, and range in a formal sense to describe a set of data.	Data Analysis	1	6	Statistics	Lev Rec
MA.6.S.6.2	variability to represent, describe, analyze, and/or summarize a	A teacher can give students data sets that contain test/quiz grades for hypothetical classes. Students are asked to calculate and compare the class mean, median, mode, and range and discuss the effects of any outliers on the measures of central tendency.	Data Analysis	1	6	Statistics	Lev Stra Thir Con Rea