Benchmark Results

This document was generated by browsing, searching, or listing all entities on CPALMS - <u>www.cpalms.org</u>

Benchmark#	Description	Remarks/Example	Idea/Standard	Subject	Grade	
MA.7.A.1.1	Distinguish between situations that are proportional or not proportional, and use proportions to solve problems.	Example 1: Two snakes, Moe and Joe, are each measured at two points in time. The first time, Moe is 3 inches long and Joe is 4 inches long. One year later, Moe is 5 inches long and Joe is 6 inches long. Which snake grew more? Maria believes that both snakes grew the same amount. Tom believes that Moe grew more. Explain under what circumstances either explanation could be correct. (In absolute terms they grew the same amount, which is not a proportional relationship; in relative terms one grew more than the other, which is a proportional relationship.)		1		Algeb
		Example 2: A recipe calls for 3 cups of flour and 2 eggs. If you wanted to increase the recipe and use 9 cups of flour, how many eggs would you need to use to keep the same ratio of flour to eggs?				
MA.7.A.1.2	Solve percent problems, including problems involving discounts, simple interest, taxes, tips, and percents of increase or	Example: A merchant buys CDs for \$11 wholesale and marks up the price by 35%. What is the retail price?	BIG IDEA 1	1	7	Algeb
MA.7.A.1.3	Solve problems involving similar figures.	Example: Rectangle A and rectangle B are similar. The lengths of congruent sides of rectangles A and B are 6 in and 5 in	BIG IDEA 1	1	7	Algeb

MA.7.A.1.4	Graph proportional relationships and identify the unit rate as the slope of the related linear function.	In a linear relation, the vertical change (change in <i>y</i> -value) per unit of horizontal change (change in <i>x</i> -value) is always the same and this ratio ("rise over run") is called the slope of the function. Example: A babysitter earns \$5 per hour. Draw a graph of money earned versus time. Find the numerical value of the slope and interpret it in words.	BIG IDEA 1	1	7	Algeb
MA.7.A.1.5	from other	Direct variation between y and x is when $y/x=k$ where k is a constant, or equivalently $y=kx$. Indirect variation is when $xy=k$ where k is a constant, or equivalently $y=k/x$.	BIG IDEA 1	1	7	Algeb
MA.7.A.1.6	Apply proportionality to measurement in multiple contexts, including scale drawings and constant speed.	The student might convert among different units of measurement to solve problems involving rates. Example 1: On a floor plan of your school, your classroom is 9 inches long and 6 inches wide. If the scale is 1 inch = 3 ft., what is the width of your classroom in feet? Explain your answer. Example 2: You have a 4 in. by 5 in. photograph and you want to enlarge it to an 8 in. by 10 in. photograph. Roberto thinks that the new picture is four times as big as the old one. Dora thinks that the new picture is twice as big as the old one. Explain their thinking.	BIG IDEA 1	1	7	Algeb
MA.7.A.3.1	Use and justify the rules for adding, subtracting, multiplying, dividing, and	Remarks: Problems should be solved using concrete or pictorial representations of models, tables, and graphs, instead of using algebraic symbolism. Example: Use the information provided in the table below to respond to each question.	BIG IDEA 3	1	7	Algeb

	finding the absolute value of integers.	DateDescription Amt WDAmt DepBal1/1/08Beg Bal\$500.001/5/08Ret\$500.001/5/08Ret CkFee\$25Fee\$25450.001/6/08Resolution\$25500.001/6/08Resolution\$25500.00Mary was charged \$25 each for 2 checks that bounced. Explain why the expression $2 \times (-25)$ = -150 describes the situation.Mary had the problem of the bounced checks resolved and didn't have to pay the penalty of \$25. She wrote (-2) $\times (-25) = 50$ to fix her checkbook. Explain why a negative number multiplied by a negative number gives a positive number in this situation.Example:Use a set of integer chips to model 				
	Add, subtract,					
MA.7.A.3.2	multiply, and divide integers, fractions, and terminating		BIG IDEA 3	1	7	Algeb

1		1		1	1	
	decimals, and					
	perform exponential					
	operations with					
	rational bases					
	and whole					
	number					
	exponents					
	including					
	solving					
	problems in					
	everyday					
	contexts.					
	Formulate and					
	use different					
	strategies to					
	solve one-step	Example: It costs an initial fixed cost of \$2				
	and two-step	plus an additional \$1.50 per mile to rent a				
MA.7.A.3.3	linear	taxi. Which equation represents the method	BIG IDEA 3	1	7	Algeb
	equations,	for calculating the total cost of a taxi ride?		-	ľ	ingeo
	including	What is the total cost for a 5-mile trip?				
	equations with					
	rational					
	coefficients.					
		Properties of equality explain the following				
		results:				
		• A balanced equation will remain balanced				
	Use the	if you add, subtract, multiply or divide				
	properties of	(excluding division by zero) both sides by				
	equality to	the same number.				
	represent an					
	equation in a	• A quantity equivalent to another quantity				
	different way	can be substituted for it.				
MA.7.A.3.4	and to show		BIG IDEA 3	1	7	Algeb
	that two					
	equations					
	are equivalent	Example 1: What is another way to express				
	in a given	the following equation? $3x + 14 = x + 30$				
	context.					
		Example 2: Why is $2x + 4 - x + 6$ the same				
		Example 2: Why is $2x + 4 = x + 6$ the same as $2x = x + 2$?				
		$\begin{bmatrix} u_0 & \Delta x - X + Z \end{bmatrix};$				
<u> </u>						

	1	1				
MA.7.A.5.1	Express rational numbers as terminating or repeating decimals.		Number and Operations	1	7	Algeb
MA.7.A.5.2	Solve non- routine problems by working backwards.	· · · · · · · · · · · · · · · · · · ·	Number and Operations	1	7	Algeb
MA.7.G.2.1	and volume of pyramids,	Students should be limited to prisms, pyramids and cylinders when calculating surface area, and prisms, pyramids, cylinders and cones when calculating volume.	BIG IDEA 2	1	7	Geom
MA.7.G.2.2	Use formulas to find surface areas and volume of three- dimensional composite shapes.	This extends the work of grade 5 to using general formulas to compute the solutions for a variety of shapes. The figure being composed or decomposed may include circles or parts of circles.	BIG IDEA 2	1	7	Geom

		1				
MA.7.G.4.1	Determine how changes in dimensions affect the perimeter, area, and volume of common geometric figures, and apply these relationships to solve problems	Example: You have two circles with		1	7	Geom
MA.7.G.4.2	Predict the results of transformations, and draw transformed figures with and without the coordinate plane.	coordinates of the vertices of the new	Geometry and Measurement	1	7	Geom

	L			1	1	1
MA.7.G.4.3	Identify and plot ordered pairs in all four quadrants of the coordinate plane.	Quadrants 2, 3, and 4 are introduced for the first time in 7 th grade.	Geometry and Measurement	1	7	Geom
MA.7.G.4.4	Compare, contrast, and convert units of	Example 1: You ride your bike from your house to the beach and home again. At the end of your trip, your bicycle odometer reads 8km. How many miles did you ride? Example 2: How many cm3 are in a 2-liter bottle of soda?	Geometry and Measurement	1	7	Geom
MA.7.P.7.1	predict which events are likely or unlikely, and if the experiment	The student will represent probabilities as fractions and decimals between 0 and 1 (inclusive), and as percentages between 0% and 100% (inclusive), and verify that the probabilities are reasonable. In 2007 mathematics standards, the concept of probability is introduced for the first time in 7 th grade.	Probability	1	7	Proba
MA.7.P.7.2	Determine, compare, and make predictions based on experimental or theoretical probability of independent or dependent events,	Experiments could involve or not involve "replacement" of an event. Students must be able to distinguish between independent and dependent events. Example: Find the probability of choosing a red marble from a bag of 9 white marbles and 1 red marble, with or without replacement of each drawn marble.	Probability	1	7	Proba

1							
		exp mat	dents use manipulatives to obtain perimental results, compare results to thematical expectations, and discuss the adity of the experiment.				
MA.7.S.6.1	of a sample to determine the appropriateness of generalizations	wha Fiv Uni assu of a	ample: You asked 10 of your classmates at is their favorite university in Florida. e of them said Florida International iversity. Based on your sample, can we ume that FIU is the favorite university approximately half of the students in ar school? In your class?	Data Analysis	1	7	Statist
MA.7.S.6.2	Construct and analyze histograms,	diff app sou req An data 34,	dents can represent the same data with ferent types of graphs and discuss the propriateness of each graph based on the rce of the data and the information uired. example of a stem-and-leaf plot for the a set (34, 30, 38, 42, 67, 68, 68, 56, 54, 82, and 85) is as follows: gend: 3 234 means scores of 32, 33, and 0,4,4,8 2 4,6 7,8,8	Data Analysis	1	7	Statist

7 8	2,5		
	at is the median of the data set? What is mode of the data set?		