Benchmark Results

This document was generated by browsing, searching, or listing all entities on CPALMS - <u>www.cpalms.org</u>

Benchmark#	Description	Remarks/Example	Idea/Standard	Subject	t Grade	Knowledge/	Cognitive /Complexity Rating
MA.8.A.1.1	Create and interpret tables, graphs, and models to represent, analyze, and solve problems related to linear equations, including analysis of domain, range, and the difference between discrete and continuous data.	Example 1: Jan decided to save some money. She already had \$25. She received and saved \$5 on Friday each week for 8 weeks. Make a table and a graph of the money she would have each week. If she continues with this same savings plan, how much money will she have after 2 years? Is the situation in this problem continuous or discrete? The problem above is technically a discrete problem. A continuous linear function such as y=25+ 5x may be used to fit the data and to solve the problem. If the domain is integers, this is a discrete function. If the domain is all real numbers, this is a continuous function.		1	8		Level 3: Strategic Thinking & Complex Reasoning
MA.8.A.1.2	slope and the x- and y- intercepts when graphing a linear equation for a	Example: For the example 1in benchmark MA.8.A.1.1, graph the equation $y = 5w + 25$. Tell why the line "slopes up" by 5 each week. Also tell why the line crosses the y-axis at 25.	BIG IDEA 1	1	8	Algebra	Level 2: Basic Application of Skills & Concepts

	problem.						
MA.8.A.1.3	Use tables, graphs, and models to represent, analyze, and solve real- world problems related to systems of linear equations.	Example 1: A zoo has turtles (each with four legs) and pelicans (each with two legs). There were 29 animals and 78 legs. How many of each type of animal were there? Your final solution should involve principles of equality. Example 2: The students in Mr. Kemp's class ordered T-shirts for the class. They found two different quotes for the cost of the shirts. Company A charges \$4 per shirt. Company B charges \$75 plus \$3 per shirt. 1. The class plans to order 30 shirts. Which company will be a better deal? 2. For what number of T- shirts is the cost the same for both companies? 3. Does the company you chose for question 1 always offer a better deal? Why or why not? Explain your answers. Students should be encouraged to make tables, graphs, and equations and notice the interconnectedness of these representations.			8	Algebra	Level 3: Strategic Thinking & Complex Reasoning
MA.8.A.1.4	Identify the solution to a	Remarks: Students should recognize that intersecting	BIG IDEA 1	1	8	Algebra	Level 2: Basic

	linear equations using graphs.	lines yield a unique solution; parallel lines yield no solution; and coincidental lines yield an infinite number of solutions. Students may use graphing technology to make observations about the effects of slope on the solution of systems of linear equations. Example: Use a graph of the following functions to determine a solution to the system of equations. y = 5x + 3 y = 3x - 9 + 2x Example: Jan started with \$25 and saved \$5 each week. Bill started at the same time with no money and saved \$10 per week. Use a graph to determine if or when Bill and Jan will					Application of Skills & Concepts
MA.8.A.1.5	Translate among verbal, tabular, graphical, and algebraic representations of linear functions.	money each person has		1	8	Algebra	Level 2: Basic Application of Skills & Concepts
MA.8.A.1.6	Compare the graphs of linear and non- linear	Students should understand that some situations can be modeled by a linear function and	BIG IDEA 1	1	8	Algebra	Level 2: Basic Application of Skills & Concepts

MA.8.A.6.2	Make reasonable approximations of square roots	Example: The formula $t = \frac{\sqrt{h}}{4}$ represents the time (t) in seconds that it takes	Number and Operations	1	8	Algebra	Level 2: Basic Application of Skills &
MA.8.A.6.1	and scientific notation to write large and small numbers and vice versa and to solve problems.	Example 1: Write 3,600,000,000 in standard scientific notation. Example 2: Write 0.000 000 000 47 in standard scientific notation. Example 3: Write	Number and Operations	1	8	Algebra	Level 1: Recall
MA.8.A.4.2	Solve and graph one- and two-step inequalities in one variable.	Example: Solve the following inequality for x: 6x-3>10 . Graph the solution set.	Algebra	1	8	Algebra	Level 2: Basic Application of Skills & Concepts
MA.8.A.4.1	specified variable.	Example 2: The following equation tells you how much simple interest you will earn if you invest an amount of money (P) at a specified rate (r), for a given amount of time (t): I = Prt. Solve for P.	Algebra	1	8	Algebra	Level 1: Recall
		Example: Mark had \$100 and added \$10 to it each year. Mandy put \$100 in the bank, earned 10% interest each year on her total amount of money in the bank, and left the interest in the bank account. Make a table of their money for 5 years. Graph the values. Explain why one function is linear and the other one is not. Example 1: Solve the following equation for h: A=bh					

	expressions that include	an object height of I dropped f 200 ft, est it will tak ground.	h feet. rom a imate e to re	If a l heigh how each th	ball is ht of long he	3				Concepts
MA.8.A.6.3	Simplify real number	Example $3 \cdot 3 \cdot 3 \cdot 3 \cdot 3$ Find the v expression 3^3 .Examp the follow $\frac{2^3 3^4 5^6}{4^2 3^2}$	$= 3^{5}E$ value c n 4 ³ - le 3: S	Examp of the Simpl	ole 2: ify	Number and Operations	1	8	Algebra	Level 2: Basic Application of Skills & Concepts
MA.8.A.6.4	Perform operations on real numbers (including integer exponents, radicals, percents, scientific notation, absolute value, rational numbers, and irrational numbers) using multi-step and real world problems.	Example shows Mr during the of his diet his diet at in the foll Month Weight Weight	. Smit first 3 . If he 245 p	th's w 3 more start pound g table 2	reight nths ed ls, fill e.		1	8	Algebra	Level 3: Strategic Thinking & Complex Reasoning
MA.8.G.2.1	-		ft flag	gpole	casts	BIG IDEA 2	1	8	Geometry	Level 3: Strategic Thinking &

		tree casts a 40 ft shadow. How tall is the tree?					Complex Reasoning
		Example 2: A 72-inch tall man casts a shadow that is 96 inches long. At the same time, a nearby crane casts a 52-foot long shadow. How tall is the crane?	5				
MA.8.G.2.2	Classify and determine the measure of angles, including angles created when parallel lines are cut by transversals.	Students identify congruent angles, and unique pairings of angles that can be used to determine the measure of missing angles. Example 1: Given that lines <i>k</i> and <i>l</i> are parallel, determine which angles are vertical, complementary, supplementary, and corresponding.	BIG IDEA 2	1	8	Geometry	Level 1: Recall
MA.8.G.2.3	that the sum of the angles in a triangle is 180- degrees and apply this fact to find	Example 1: "Make a paper triangle and cut off regions around the vertices. Then place the vertices together, meeting at a common point, to see that they form a (approximate) straight	BIG IDEA 2	1	8	Geometry	Level 2: Basic Application of Skills & Concepts

			1		T	1	
		angle."	1	1 /	1	1	
	angles and the		1	1 /	1	1 /	
	sum of angles	Example 2: In the	1	1 /	1	1 /	
	in polygons.	following diagram, line k	1	1	(1	
		is parallel to line l. Use	1	1	(J	1	
		properties of angles made		1	(J	1	
		when parallel lines are cut		1	(J	1	
		by transverse lines to	1	1 1	(1	
		demonstrate that the sum	1	1 1	(1	
		of the three interior angles		1 1	()	1	
		of a planar triangle is 180	1	1 1	()	1	
		degrees.	1	1	(J	1	
			1	1 1	(1	
			1	1 1	()	(
		L. 2. Determine the	1	1 1	(1	
		Example 3: Determine the sum of the internal angles		1 1	(1	
		sum of the internal angles	1	1 1	(1	
		of a regular hexagon.	1	1	(1	
		Investigate whether this sum is the same or	1	1	(1	
		sum is the same or different for different	1	1	(1	
		different for different	1	1	(1	
		hexagons. Explain your	1	1 1	(1	
		findings.	1	1 7	()	1	
		Example 1: You are)		
		wrapping a gift for your	1	1 1	()	1	
		teacher's birthday. It is a	1	1 1	()	1	
		very long and skinny	1	1 1	()	1	1
	1	pencil. You want to wrap	1	1 1	()	1	
		it in a box so that your	1	1 1	()	1	
	apply Detheses	teacher can not tell what	1	1 1	()	1	1
		shape it is. Your friend	1	1 1	()	1	10
		has a shoe box that	1	1	(Level 2:
		measures 10 inches by 7		1. 7		1	Basic
MA.8.G.2.4			BIG IDEA 2	1	8		Application
		pencil is 13 inches long.	1	1	(of Skills &
	_	s Will you be able to fit the	1	1	(1 /	Concepts
	in the	pencil into the shoe box	1	1	(1	
		and close the lid? Justify	1	1	(1	
	plane.	your answer with	1	1	(1	
		mathematics.	1	1 1	(1	
		1	1	1 1	(1	1
		1	1	1 1	1 1	1	1
		Example 2: You are		1 1	1 1	1	
			<u>/</u>	<u>.</u>	<u> </u>	<u>·</u>	1

	sailing your boat to Key West from Pensacola. Key West is 82°W and 25°N, and your boat is 84°W and 29°N. What is the distance from your boat to Key West? Assume 1° change in longitude or latitude is 70 miles.					
MA.8.G.5.1 Compare contrast, convert u of measu between different measurer systems of customan metric (S and dimensic including temperat area, volu and deriv units to s problems	and second. second. inits re (US Students should not be using only formulas to do I)) this. 1 mile = 5280 feet, and there are 3600 may use these ure, equivalencies to substitute ure, feet for miles and seconds red for hours.	Geometry and Measurement	1	8	Geometry	Level 3: Strategic Thinking & Complex Reasoning

		units is demonstrated here:					
MA.8.S.3.1	construct appropriate data displays, including box and whisker plots, scatter plots, and lines	Example: Alfonso's bowling scores are 125, 142, 165, 138, 176, 102, 156, 130, and 142. Make a box-and-whiskers plot of the data. The box and whiskers plot	BIG IDEA 3	1	8	Statistics	Level 2: Basic Application of Skills & Concepts
MA.8.S.3.2	Determine and describe how changes in data values impact measures of central tendency.	84, 85, 88, 78, and 90 on	BIG IDEA 3	1	8	Statistics	Level 2: Basic Application of Skills & Concepts