Benchmark Results

This document was generated by browsing, searching, or listing all entities on CPALMS - <u>www.cpalms.org</u>

Benchmark#	Description	Remarks/Example	Idea/Standard	Subject	Grade	Body Of Knowledge/ Strand	Cognitive Complexity Rating	E A R
MA.912.A.1.1	Know equivalent forms of real numbers (including integer exponents and radicals, percents, scientific notation, absolute value, rational numbers, irrational numbers).	Example: Express 5 ⁻² without an exponent.	Real and Complex Number Systems	1	912	Algebra	Level 1: Recall	0
MA.912.A.1.2	Compare real number expressions.	Example 1: Which is greater: 2^3 or $\sqrt{49}$? Example 2: Order the following numbers from the smallest to the largest: 3.2, 2.1×10 ⁻³ , $\sqrt{15}$, -1.	Real and Complex Number Systems	1	912	Algebra	Level 2: Basic Application of Skills & Concepts	0
MA.912.A.1.3	Simplify real number expressions using the laws of exponents.	Example 1: Simplify $5^3 * 5^{11}$. Example 2: Simplify $(5^3)^2$	Real and Complex Number Systems	1	912	Algebra	Level 1: Recall	0
MA.912.A.1.4	Perform operations on real numbers (including integer exponents, radicals, percents, scientific	Example 1: If the length of one leg of a right triangle is 6 inches and the length of the hypotenuse is 10 inches, what is the length of the other leg?	Real and Complex Number Systems	1	912	Algebra	Level 2: Basic Application of Skills & Concepts	0

								and the second se
	notation, absolute value, rational numbers, irrational numbers) using multi-step and real-world problems.	Example 2: Earth's volume is approximately 1.08×10^{12} km ³ . Sun's volume is approximately 1.41×10^{18} km ³ . How many times is the Sun larger than the Earth?						
MA.912.A.1.5	Use dimensional (unit) analysis to perform conversions between units of measure, including rates.	Example 1: Convert 5 miles per hour to feet per second. Example 2: A sink is leaking 20 milliliters of water per second. How many gallons of water does it leak per day? Example 3: You bought an old car with a 442 cubic inch engine. Your friend has a 7.0 liter engine. Determine which engine is larger by converting 442 cubic inches to liters.	Real and Complex Number Systems	1	912	Algebra	Level 2: Basic Application of Skills & Concepts	0
MA.912.A.1.6	Identify the real and imaginary parts of complex numbers and perform basic operations.	Example: Multiply (7-4i)(10+6i).	Real and Complex Number Systems	1	912	Algebra	Level 2: Basic Application of Skills & Concepts	0
MA.912.A.1.7	Represent complex numbers geometrically.	Example: Plot the point corresponding to 3 - 2i in the complex plane and determine the absolute value of this number.	Real and Complex Number Systems	1	912	Algebra	Level 2: Basic Application of Skills & Concepts	0

MA.912.A.1.8	Use the zero product property of real numbers in a variety of contexts to identify solutions to equations.	Example 1: Solve for x. (x + 5) (x - 1) = 0 Example 2: Solve for x. $x^3 - x^2 - 2x + 2 = 0$ Example 3: A ball is kicked and flies through the air according to the following function: $h(t) = -16t^2+47t+3$, where h is the height of the ball (in feet) and t is the number of seconds after the ball is kicked. At what time, t, does the ball hit the ground after being kicked?	Real and Complex Number Systems	1	912	Algebra	Level 2: Basic Application of Skills & Concepts	C
MA.912.A.10.1	Use a variety of problem-solving strategies, such as drawing a diagram, making a chart, guessing- and- checking, solving a simpler problem, writing an equation, working backwards, and creating a table.	Students should work problems where they are required to distinguish relevant from irrelevant information, and either find missing data or make appropriate estimates. Example 1: Fran has scored 16, 23, and 30 points in her last three games. At least how many points must she score in the next game so that her four-game average	Mathematical Reasoning and Problem Solving	1	912	Algebra	Level 3: Strategic Thinking & Complex Reasoning	C

		does not fall below						
		20 points?						
		Example 2: The						
		swimming pool at						
		Roanoke Park is 24						
		feet long and 18						
		feet wide. The park						
		district has						
		determined that						
		they have enough						
		money to put a						
		walkway of uniform						
		width, with a						
		maximum area of						
		288 square feet,						
		around the pool.						
		How could you find						
		the maximum width						
		of a new walkway?						L
		Example 1: A						
		student solving the						
		$x = \sqrt{x+6}$						
		equation with the						
		comes up with the						
		solution set $ x = -2,3$						
		Explain why $[\pi]^{[\pi]^{[n]}=-2,5]}$ is						
		not the solution set						
	Decide whether	to this equation, and					r 10	
	a solution is	why the "check"	Mathematical				Level 2:	
	reasonable in the	step is essential in	Reasoning and	1	012	Alashus	Basic	6
MA.912.A.10.2	context of the	solving the	Problem	1	912	Algeora	Application	μ
	original	equation.	Solving				Concepts	
	situation.						Concepts	
		Example 2: A ball						
		is kicked and flies						
		through the air						
		according to the						
		following function:						
		$n(t) = -16t^{2}+47t+3$,						
		where h is the						
		feet) and the ball (in						
		number of accord						
		number of seconds						

								-
		after the ball is kicked. At what time, t, does the ball hit the ground after						
		being kicked?						
MA.912.A.10.3	Decide whether a given statement is always, sometimes, or never true (statements involving linear or quadratic expressions, or inequalities, rational or radical expressions, or logarithmic or exponential functions).	Example 1: Alex says $x = -1$ is the solution to the following system of inequalities. Explain to Alex when $x = -1$ is a solution and when it is not a solution. $y \ge -1/2x-3$ y<3x+1 Example 2: Is the statement $(i) = i^{T}$ true for all x, for some x, or for no x? Example 3: Let c be any constant number different than 5. Which of the following lines will always be parallel to $y=2x+5$? Explain your answer. a. $y = -2x + c$ b. $y = \frac{1}{2}x + c$ C. $y = 2x + c$ d. $y = -\frac{1}{2}x + c$	Mathematical Reasoning and Problem Solving	1	912	Algebra	Level 3: Strategic Thinking & Complex Reasoning	0
MA.912.A.10.4	Use counterexamples to show that statements are false.	by an example 1. Show by an example that the following statement is false: "The product of two complex numbers is never a real	Mathematical Reasoning and Problem Solving	1	912	Algebra	Level 3: Strategic Thinking & Complex Reasoning	0

		number."						
		Example 2: "All quadratic equations						
		have exactly two						
		distinct real roots."						
		example to show						
		that the statement in						
		quotation marks is false.						
Create a gra to represent		Example 1: Conduct an experiment as follows. Take a						
		beverage out of a refrigerator and place it in a warm room. Measure its						
	Create a graph to represent a real-world situation.	two minutes. Plot the temperature of the beverage as a function of time. What does the graph show about	Relations and	1	912	Algebra	Level 2: Basic Application	0
		the temperature change of this beverage?	i unctions				of Skills & Concepts	
		Example 2: A child walks to school at a steady pace. Plot her distance from						
		of time. Now plot her distance to the school as a function of time.						
MA.912.A.2.2	Interpret a graph representing a real-world situation.	Example: Jessica is riding a bicycle in a straight line. The graph below shows her speed as it relates to the time	Relations and Functions	1	912	Algebra	Level 2: Basic Application of Skills & Concepts	0
		she has spent riding.						

		Assign appropriate units to the labels of the axes and insert numbers to the axes. Describe what might have happened to account for this graph.						
MA.912.A.2.3	Describe the concept of a function, use function notation, determine whether a given relation is a function, and link equations to functions.	Example 1: Given the relation $\{(-3, -1), (2, -1), (1, 0), (2, 5)\}$, determine if the relation can be a function. Example 2: for f(x)=2x+6, find $f(3)and find x such thatf(x)=10Example 3: Giventhe graph of therelation below,decide if thisrelation is afunction. Explainyour reasoning.$	Relations and Functions	1	912	Algebra	Level 2: Basic Application of Skills & Concepts	0
MA.912.A.2.4	Determine the domain and range of a relation.	Example: Determine the domain and range of $\int (\bar{x}) = \sqrt{\bar{x}}$ so that $f(x)$ is a function.	Relations and Functions	1	912	Algebra	Level 2: Basic Application of Skills & Concepts	0
MA.912.A.2.5	Graph absolute value equations and inequalities in two variables.	Example: Draw the graph of $y = 2x - 5 $ and compare it with the graph of $y = 2x$ - 5.	Relations and Functions	1	912	Algebra	Level 2: Basic Application of Skills & Concepts	0
MA.912.A.2.6	Identify and	Example: Graph	Relations and	1	912	Algebra	Level 2:	0

	graph common functions (including but not limited to linear, rational, quadratic, cubic, radical, absolute value).	$f(x) = x^{2}, g(t) = x , h(t) = \frac{1}{t^{2}}$ $h(x) = \sqrt{x}$	Functions				Basic Application of Skills & Concepts	
MA.912.A.2.7	Perform operations (addition, subtraction, division, and multiplication) of functions algebraically, numerically, and graphically.	Example: Let f(x)=7x+2 and $g(x)=x^2$. Find f(x)*g(x)	Relations and Functions	1	912	Algebra	Level 2: Basic Application of Skills & Concepts	C
MA.912.A.2.8	Determine the composition of functions.	Example: Let $f(x)=x^3$ and $g(x)=x^2$. 2. Find $f(g(5))$ and g(f(x))	Relations and Functions	1	912	Algebra	Level 1: Recall	C
MA.912.A.2.9	Recognize, interpret, and graph functions defined piece- wise with and without technology.	Example: Sketch the graph of $f(y) = \begin{bmatrix} x+2, x \\ -x^2, x < 0 \end{bmatrix}$	Relations and Functions	1	912	Algebra	Level 2: Basic Application of Skills & Concepts	C
MA.912.A.2.10	Describe and graph transformations of functions	Example: Describe how you would graph $\frac{1}{1} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ from the graph of $\frac{g(x) = x^2}{2}$.	Relations and Functions	1	912	Algebra	Level 2: Basic Application of Skills & Concepts	C
MA.912.A.2.11	Solve problems involving functions and their inverses.	Example: Find the inverse of the $f(x)=x^3-1$ function. Sketch the graph of the function and its inverse	Relations and Functions	1	912	Algebra	Level 3: Strategic Thinking & Complex Reasoning	C
MA.912.A.2.12	Solve problems using direct, inverse, and joint variations.	Example 1: According to Hooke's Law, the force needed to	Relations and Functions	1	912	Algebra	Level 3: Strategic Thinking & Complex	C

		stretch a spring is					Reasoning	Г
		directly						
		proportional to the						
		net spring stretch						
		(stretched spring						
		length minus						
		original spring						
		length). If 20						
		Newtons (N) force						
		results in a net						
		spring stretch of 5						
		centimeters, what is						
		the net spring						
		stretch achieved						
		when a force of						
		80N is applied						
		(assuming 80N						
		force does not						
		exceed the spring's						
		stretch limit)?						
		Example 2: On						
		Monday, your drive						
		to work takes 10						
		minutes and your						
		average speed is 30						
		mph. On Tuesday,						
		your drive on the						
		same route takes 15						
		minutes. What is						
		your average speed						
		on Tuesday?	1					Ļ
		Example 1: You						
		and your parents are						
		going to Boston.						
		Y ou will rent a car						
	Solve real-world	at Boston's Logan					Level 3:	
	problems	Airport on a	Polations and				Strategic	
MA.912.A.2.13	involving	Monday morning	Functions	1	912	Algebra	Thinking &	0
	relations and	and drop the car off					Complex	
	functions.	in downtown					Reasoning	
		Providence. RL on						
		the following						
		Wednesday						
		afternoon. Find the						

		rates from two national car companies and plot the costs on a graph. You may choose limited or unlimited mileage plans. Decide which company offers the best deal. Explain your answer. Example 2: A cab company charges a fixed flag rate of \$20 and \$1.40 for every mile covered. Write an expression for the total cab fare as a function of distance driven. Then solve for the total fare after the						
MA.912.A.3.1	Solve linear equations in one variable that include simplifying algebraic expressions.	cab traveled for 36 miles. Example 1: Solve the following equation for x: 3(2x+5) = 10x-3+2x Example 2: Solve the following equation for m: $\frac{1}{2}m$ $+ 2(\frac{3}{4}m-1)=\frac{1}{4}m+6$	Linear Equations and Inequalities	1	912	Algebra	Level 2: Basic Application of Skills & Concepts	0
MA.912.A.3.2	Identify and apply the distributive, associative, and commutative properties of real numbers and the properties of equality.	Example 1: Simplify the following expresion and identify the properities used in each step:	Linear Equations and Inequalities	1	912	Algebra	Level 2: Basic Application of Skills & Concepts	0

		Example 2: Given the following solution identify the properties used to justify each step: 3x+7=2x+1+3x 3x+7=2x+3x+1 3x+7=5x+1 -2x=-6						
MA.912.A.3.3	Solve literal equations for a specified variable.	Example 1: Solve the following equation for p: q=4p-11. Example 2: Solve the following equation for c: ac=2b + 2c Example 3: The area formula for a circle is: $A = p r^2$. Solve for <i>r</i> Solve for . Example 4: The following formula tells you how to convert degrees in Celsius to degrees in Fahrenheit: $F=(1.8 \times C) + 32$ Write a formula that will tell how to convert degrees in Fahrenheit to degrees in Celsius.	Linear Equations and Inequalities	1	912	Algebra	Level 2: Basic Application of Skills & Concepts	0
MA.912.A.3.4	Solve and graph simple and compound inequalities in one variable and be able to justify each step in a	Example 1: Solve the following inequality for <i>x</i> and then graph the solution set on a number line: 7 < 3x + 5 < 11	Linear Equations and Inequalities	1	912	Algebra	Level 2: Basic Application of Skills & Concepts	0

	solution.	Example 2: Solve the following inequality for x in the set {0, 1, 2, 3, 4}: 6x-3>10 Show your work.						
		Example 3: Solve the following inequality for x, explaining each step in your solution: $8x-7 \le 2x+5$						
MA.912.A.3.5	Symbolically represent and solve multi-step and real-world applications that involve linear equations and inequalities.	Example 1: You are selling tickets for a play that cost \$3 each. You want to sell at least \$50 worth. Write and solve an inequality for the minimum number of tickets you must sell. Example 2: An alloy is a metal that contains combinations of different types of metal. A manufacturing company needs to make an alloy that has nickel content between 43% and 47% (based on mass). The company already has an alloy with 50% nickel and another alloy with 40% nickel. They plan to mix them to make the alloy they need. Find the least	Linear Equations and Inequalities	1	912	Algebra	Level 2: Basic Application of Skills & Concepts	0

		and greatest mass (in kg) of a 50% nickel alloy that should be mixed with a 40% nickel alloy to end up with 100 kilograms of an alloy containing the required percentage of nickel.						
MA.912.A.3.6	Solve and graph the solutions of absolute value equations and inequalities with one variable.	Example 1: Given the following equation, solve for x and graph the solution on a number line: 2x=5 =7 Example 2: Given the following inequality, solve for x and graph the solution on a number line: $ 3x-2 \ge 5$	Linear Equations and Inequalities	1	912	Algebra	Level 2: Basic Application of Skills & Concepts	0
MA.912.A.3.7	Rewrite equations of a line into slope- intercept form and standard form.	Example 1: Write the following linear equation in standard form $6y = 12 - 5x$. Example 2: Write the equation of the line $4x + 3y = 12$ in slope-intercept form.	Linear Equations and Inequalities	1	912	Algebra	Level 1: Recall	0
MA.912.A.3.8	Graph a line given any of the following information: a table of values, the x- and y- intercepts, two points, the slope and a point, the equation of the line in slope- intercept form,	Example 1: Graph the equation $3x - y = 2$. Example 2: Graph the equation $y = \frac{1}{2}x + 2$ Example 3: Graph the line that contains (3,0) and has a slope of -3/2.	Linear Equations and Inequalities	1	912	Algebra	Level 2: Basic Application of Skills & Concepts	0

								_
	standard form, or point-slope form .							
MA.912.A.3.9	Determine the slope, x- intercept, and y- intercept of a line given its graph, its equation, or two points on the line.	Example: Find the slope and y- intercept of the line described by the equation $4x + 6y = 9$.	Linear Equations and Inequalities	1	912	Algebra	Level 2: Basic Application of Skills & Concepts	C
MA.912.A.3.10	Write an equation of a line given any of the following information: two points on the line, its slope and one point on the line, or its graph. Also, find an equation of a new line parallel to a given line, or perpendicular to a given line, through a given point on the new line.	Example 1: Find an equation of the line through the points $(1, 4)$ and $(3, 10)$. Example 2: Find an equation of the line that goes through the point $(5, -2)$ with a slope of -2 Example 3: Find an equation of the line through the point $(1, 4)$ and perpendicular to $y = 3x + 1$. Example 4: Find an equation of the line parallel to $y = 3x + 2$ that passes through the origin.	Linear Equations and Inequalities	1	912	Algebra	Level 2: Basic Application of Skills & Concepts	С
MA.912.A.3.11	Write an equation of a line that models a data set, and use the equation or the graph to make predictions. Describe the slope of the line in terms of the	Example 1: As your family is traveling along an interstate, record the odometer reading every 5 minutes. See if a graph of time and distance shows that the relation is approximately linear. If so, write	Linear Equations and Inequalities	1	912	Algebra	Level 3: Strategic Thinking & Complex Reasoning	C

								_
	data, recognizing that the slope is the rate of change.	the equation of the line that best fits your data. Predict the time for a journey of 50 miles. What does the slope of the line represent?						
		Example 2: You light a candle and record its height in centimeters every minute. The results recorded as (time, height) are (0, 20), (1, 18), (2, 16), (3, 14), (4, 13), (5, 11), (6, 10), (7, 8), (9, 4), and (10, 3). Find the line of best fit to express the candle's height as a function of the time and state the meaning of the						
		slope in terms of the burning candle.						
MA.912.A.3.12	Graph a linear equation or inequality in two variables with and without graphing technology. Write an equation or inequality represented by a given graph.	Example: On a coordinate plane, graph of the following inequality: $3x+8y\ge 24$ Example: Use a spreadsheet to create a line graph of the following function: $y = (3/4)x$ + 7	Linear Equations and Inequalities	1	912	Algebra	Level 2: Basic Application of Skills & Concepts	0
MA.912.A.3.13	Use a graph to approximate the solution of a	Example 1: Graph 3y - x = 0 and $2x + 4y = 15$ on the same	Linear Equations and Inequalities	1	912	Algebra	Level 2: Basic Application	0

system of li	near coordinate system.					of Skills &	Γ
equations o	r Determine whether					Concepts	
inequalities	in the lines intersect. If					1	
two variable	es so, find the point of						
with and	intersection.						
without							
technology.	. Example 2: Graph						
	the following						
	inequalities and						
	shade the region (if						
	any) on the						
	coordinate plane						
	where both						
	inequalities are true:						
	$y \le 4$ and $x + y \le 5$						
	Example 3.						
	Approximate the						
	solution if any for						
	the following						
	system of linear						
	equations:						
	$\int y = -\frac{1}{4}x + 9$						
	y = 8						
	Example 4: Explain $(4, 2)$ is a						
	why $(4,-3)$ is a solution to the						
	following system of						
	inequalities.						
	inequalities.						
	$\int y < 3x + 1$						
) x > 2						
	Example 1: Solve						
Solve system	ms the following						
of linear	system of equations						
equations and in a small it is a	nd by substitution:					Level 2:	
two and thr	y = 2x	Linear				Basic	
MA.912.A.3.14 woriables us	ving	Equations and	1	912	Algebra	Application	(
graphical	Example 2: Graph	Inequalities				of Skills &	
substitution	and the solution for the					Concepts	
elimination	following system of						
methods.	inequalities:						

		1		1				-
		$\begin{cases} 3x + 4y < 11 \end{cases}$						
		3X + 2Y 3 /						
		E1- 2. C-1						
		Example 5: Solve						
		the following						
		system of						
		equations:						
		x - 2y + 3z = 5						
		$\begin{cases} x_1 + 5z = 11 \\ 5y - 6z = 9 \end{cases}$						
		Example 1: Each						Γ
		week, you work a						
		total of 20 hours.						
		Some of the 20						
		hours is spent						
		working at the local						
		bookstore and some						
		spent at the						
		drugstore. You						
		prefer the bookstore						
		and want to work at						
		least 10 more hours						
		at the bookstore						
		relative to the						
		drugstone Drovy o						
	Solve real-world	urugstore. Draw a						
	problems	graph to show the					T 12	
	involving	possible	T ·				Level 3:	
A 010 A 0 15	systems of	combinations of	Linear	1	010	A.1. 1	Strategic	
MA.912.A.3.15	linear equations	nours that you	Equations and	1	912	Algebra	I hinking &	ľ
	and inequalities	could work.	Inequalities				Complex	
	in two and three	Example 2. Let r –					Reasoning	
	variables.	the amount of liquid						
		(in millilitars) of a						
		product sold by						
		come company The						
		some company. The						
		nicome (1) that the						
		from color of the						
		liquid car be						
		iiquiu can be						
		represented by the 10.5						
		equation $I(x)=10.5x$						
		and the expenses						
		(E) for the						
		production of the						
		liquid can be						
		represented by the						

		equation E(x)=5.25x+10,000, where I and E are in dollars. What is the minimum amount of the liquid (in milliliters) that the						
		company must sell to reach the break- even point (the point where income in dollars is equal to expenses in dollars)?						
		Example 3: You need to rent a car to drive from Pensacola to Key West. You will need the car for 7						
		days. One car rental agency charges \$55 per day and \$0.06 per mile. Another rental agency charges \$65 per day						
		with unlimited mileage. Which rental offer will cost you less? Create a situation where the rental offer in this situation will cost						
		more than the other offer. Explain.						
	Simplify monomials and monomial	Simplify (Ja ¹)(Ila ¹)					I evel 1.	
MA.912.A.4.1	expressions using the laws of integral exponents.	Example 2: Simplify: $\frac{15 x^7}{3 x^5} \text{ x } \neq \emptyset$	Polynomials	1	912	Algebra	Recall	0
		Example 3:						

		Simplify:						Τ
		$(3z^4)^3$						
		Example 4: Simplify:						
		Example 5: Simplify: (3 xy) ³						
		Example 6: Simplify: $\frac{10}{x^{-4}}$						
		Example 7: Simplify:						
		Example 1:						Ť
MA.912.A.4.2	Add, subtract, and multiply polynomials.	Example 2:	Polynomials	1	912	Algebra	Level 1: Recall	0
		(n+2)(4n-5)=?				_		
MA.912.A.4.3	Factor polynomial expressions.	Example 1: Factor Example 2: Factor $\chi^{1} - \eta_{1} + \beta$ Example 3: Factor $4\chi^{2} - 2\beta$	Polynomials	1	912	Algebra	Level 2: Basic Application of Skills & Concepts	. 0
MA.912.A.4.4	Divide polynomials by monomials and polynomials with various	र्मिः क्षि Example 1: Simplify	Polynomials	1	912	Algebra	Level 2: Basic Application of Skills & Concepts	0

	techniques, including synthetic division.	Example 2: Example 3: Use synthetic division to divide $\frac{1}{2} - \frac{1}{2} - \frac{1}{2}$ by x+3.						
MA.912.A.4.5	Graph polynomial functions with and without technology and describe end behavior.	End behavior may be interpreted as behavior of the function for very large positive or negative(absolutely) independent variables. Example 1: Graph the following equation: Example 2: Describe the end behavior for the graph of the following equation	Polynomials	1	912	Algebra	Level 2: Basic Application of Skills & Concepts	0
MA.912.A.4.6	Use theorems of polynomial behavior (including but not limited to the Fundamental Theorem of Algebra, Remainder Theorem, the Rational Root Theorem, Descartes' Rule of Signs, and the	Example 1: Given that 4 is a zero of the polynomial , use synthetic divison to find the remaining zeros of the polynomial. Example 2: Use the Remainder Theorem to evaluate	Polynomials	1	912	Algebra	Level 2: Basic Application of Skills & Concepts	0

	Conjugate Root Theorem) to	x=3. Explain your solution method.						
	find the zeros of a polynomial	Example 3. Use the						
	function.	Rational Root						
		Theorem to						
		determine the						
		possible rational						
		roots of the						
		equation						
		Example 4: Use						
		Descartes' Rule of						
		Signs to determine						
		the possible number						
		of positive real						
		zeros and negative						
		following						
		polynomial						
		function:						
		((i=\$-\$+1+)-3						
MA.912.A.4.7	Write a polynomial equation for a given set of real and/or complex roots.	Example: Find a polynomial equation with the lowest degree possible and with real coefficients that involves the following three roots: • 2+i • 3 with a multiplicity of 2	Polynomials	1	912	Algebra	Level 2: Basic Application of Skills & Concepts	0
MA.912.A.4.8	Describe the relationships among the solutions of an equation, the zeros of a	Example: Use technology to find the solutions of the following equation:	Polynomials	1	912	Algebra	Level 2: Basic Application of Skills & Concepts	0
	function, the x-	results to the graph						

								-
	intercepts of a graph, and the factors of a polynomial expression with and without technology.	of the function						
MA.912.A.4.9	Use graphing technology to find approximate solutions for polynomial equations.	Example: Approximate the solution(s) of to the nearest thousandth.	Polynomials	1	912	Algebra	Level 1: Recall	0
MA.912.A.4.10	Use polynomial equations to solve real-world problems.	Example: You want to make an open- top box with a volume of 500 square inches from a piece of cardboard that is 25 inches by 15 inches by cutting squares from the corners and folding up the sides. Find the possible dimensions of the box.	Polynomials	1	912	Algebra	Level 2: Basic Application of Skills & Concepts	0
MA.912.A.4.11	Solve a polynomial inequality by examining the graph with and without the use of technology.	Example: Find the solution for $\frac{1}{1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}}$ by graphing the function $\frac{1}{1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}}$.	Polynomials	1	912	Algebra	Level 2: Basic Application of Skills & Concepts	0
MA.912.A.4.12	Apply the Binomial Theorem.	Pascal's triangle is a relevant and interesting structure for examining the Binomial Theorem. Students are expected to know how to use Pascal's triangle in expanding binomials raised to	Polynomials	1	912	Algebra	Level 2: Basic Application of Skills & Concepts	0

		positive integer powers.						
		Example: Expand $(x + 2)^4$						
MA.912.A.5.1	Simplify algebraic ratios.	Example: Simplify $\frac{x^2 - 16}{x^2 + 4x}$	Rational Expressions and Equations	1	912	Algebra	Level 2: Basic Application of Skills & Concepts	0
MA.912.A.5.2	Add, subtract, multiply, and divide rational expressions.	Example: Find the sum of $\frac{x^{2}-4}{x^{1}}$, $\frac{x^{2}-8}{x^{3}}$, and tell for what value(s) of x the sum is undefined.	Rational Expressions and Equations	1	912	Algebra	Level 2: Basic Application of Skills & Concepts	0
MA.912.A.5.3	Simplify complex fractions.	Example: Simplify $\begin{pmatrix} s \\ s \\ \hline 1 \\ \hline s + 2 \end{pmatrix}$	Rational Expressions and Equations	1	912	Algebra	Level 2: Basic Application of Skills & Concepts	0
MA.912.A.5.4	Solve algebraic proportions.	Example: Create a tutorial to be posted to the school's Web site to explain how to solve an algebraic proportion for beginning Algebra students. $\frac{x+5}{4} = \frac{3x+5}{7}$ Use $\frac{x}{4} = \frac{7}{7}$ as an example.	Rational Expressions and Equations	1	912	Algebra	Level 1: Recall	0
MA.912.A.5.5	Solve rational equations.	Example: Solve the following rational equation for n: $\frac{1}{1} \frac{1}{n^2 + n^2}$	Rational Expressions and Equations	1	912	Algebra	Level 2: Basic Application of Skills & Concepts	0
MA.912.A.5.6	Identify removable and non-removable discontinuities, and vertical, horizontal, and oblique	Example: Identify vertical, horizontal, and oblique asymptotes, find the zeros, and graph the following rational functions:	Rational Expressions and Equations	1	912	Algebra	Level 2: Basic Application of Skills & Concepts	0

	asymptotes of a graph of a rational function, find the zeros, and graph the function.	$f(x) = \frac{x_{x+2}}{x_{x-1}}$ $g(x) = \frac{x_{x-1}}{x_{x-1}}$ $h(x) = \frac{x}{x^{2} - 4}$						
MA.912.A.5.7	Solve real-world problems involving rational equations (mixture, distance, work, interest, and ratio).	Example: It takes Bob 3 hours to paint one side of a house. It takes Joe 2 hours to paint the same side of the house. How long will it take them if they work together?	Rational Expressions and Equations	1	912	Algebra	Level 3: Strategic Thinking & Complex Reasoning	0
MA.912.A.6.1	Simplify radical expressions	Example 1: Simplify $\sqrt{48\chi^3}$ Example 2: Simplify $\frac{8}{\sqrt{24}}$	Radical Expressions and Equations	1	912	Algebra	Level 2: Basic Application of Skills & Concepts	0
MA.912.A.6.2	Add, subtract, multiply, and divide radical expressions (square roots and higher).	Example 1: Simplify Example 2: Simplify $\sqrt[3]{3} - \sqrt[3]{1-\sqrt[3]{3}}$	Radical Expressions and Equations	1	912	Algebra	Level 2: Basic Application of Skills & Concepts	0
MA.912.A.6.3	Simplify expressions using properties of rational exponents.	Example 1: Simplify $\begin{pmatrix} \frac{1}{a^2} \\ a^3 \end{pmatrix}$ Example 2: Simplify $\begin{pmatrix} \frac{a^{\frac{1}{2}}}{a^{\frac{1}{3}}} \end{pmatrix}$ Example 3:	Radical Expressions and Equations	1	912	Algebra	Level 1: Recall	0

		Simplify $\left(\frac{1}{4}\right)^{\frac{1}{4}}$						
		Example 4: Simplify						
		(81) ^{-(1/2)}						
		Example 5: Simplify $\frac{1}{27-(12)}$						
MA.912.A.6.4	Convert between rational exponent and	Example 1: Rewrite $\sqrt[4]{5^6}$ as 5 to a rational power.	Radical Expressions	1	912	Algebra	Level 1:	0
WIA.912.A.0.4	radical forms of expressions.	Example 2: Rewrite $\sqrt[4]{x^3}$ as x to a rational power.	and Equations				Recall	
		Example 1: Solve the following equation for x: $\sqrt{1+9}=9$						
MA.912.A.6.5	Solve equations that contain radical expressions.	Example 2: Solve the following equation for y: $\sqrt{1+9-9}$.	Radical Expressions and Equations	1	912	Algebra	Level 2: Basic Application of Skills & Concepts	C
		Example 3: Solve the following equation for z: $z^{\frac{5}{2}} = 32$						
MA.912.A.7.1	Graph quadratic equations with and without	Example 1: Draw the graph of $ \cdot \cdot \cdot $ Using a graphing calculator or a	Quadratic	1	912	Algebra	Level 2: Basic Application	C
	graphing technology.	spreadsheet (generate a data set), display the graph to check your	Equations				of Skills & Concepts	

		work.						
MA.912.A.7.2	Solve quadratic equations over the real numbers by factoring and by using the quadratic formula.	Example 1: Solve the following equation for x: $x^2 - 3x + 2=0$ Example 2: Solve the following equation for x: $x^2 - 7x + 9=0$	Quadratic Equations	1	912	Algebra	Level 2: Basic Application of Skills & Concepts	C
MA.912.A.7.3	Solve quadratic equations over the real numbers by completing the square.	Example 1: Solve the following equation for x: $(x-1)^{2}=0$ Example 2: Solve the following equation for x by completing the square: $(x+1)^{2}=0$	Quadratic Equations	1	912	Algebra	Level 2: Basic Application of Skills & Concepts	C
MA.912.A.7.4	Use the discriminant to determine the nature of the roots of a quadratic equation.	Example: Use the discriminant to determine whether $r^{i+(r-1)}$ has distinct real roots.	Quadratic Equations	1	912	Algebra	Level 1: Recall	C
MA.912.A.7.5	Solve quadratic equations over the complex number system.	Example: Solve the following equation for x over the set of complex numbers: $r^{1} \cdot r^{1} \cdot$	Quadratic Equations	1	912	Algebra	Level 2: Basic Application of Skills & Concepts	C
MA.912.A.7.6	Identify the axis of symmetry, vertex, domain, range and intercept(s) for a given parabola.	Example: Identify the axis of symmetry, vertex, domain, range, and intercepts for the graph of	Quadratic Equations	1	912	Algebra	Level 1: Recall	C
MA.912.A.7.7	Solve non-linear systems of	Example: Find the solution for the	Quadratic Equations	1	912	Algebra	Level 3: Strategic	C

	1		1	1	1			-
	equations with and without using	following system of equations: [y=x ² -3r+1					Thinking & Complex Reasoning	
	technology.	x + y + 2 = 0						
MA.912.A.7.8	Use quadratic equations to solve real-world problems.	Example: You have just planted a rectangular garden of corn in a plot near your home. You want to plant a uniform border of carrots around the rows of corn as shown in the figure below. According to the amount of seeds you have, you need an equal amount of area for corn and carrots. What should the width, x, in feet, of the border be?	Quadratic Equations	1	912	Algebra	Level 2: Basic Application of Skills & Concepts	C
MA.912.A.7.9	Solve optimization problems.	Example: You have 100 feet of fencing to make three sides of a rectangular area using an existing straight fence as the fourth side. Construct a formula in a spreadsheet to determine the area you can enclose. Use the spreadsheet to make a conjecture about the maximum area possible. Prove (or disprove) your conjecture by solving an	Quadratic Equations	1	912	Algebra	Level 3: Strategic Thinking & Complex Reasoning	C

								_
		appropriate quadratic equation.						
MA.912.A.7.10	Use graphing technology to find approximate solutions of quadratic equations.	Example: Use a graphing calculator to solve the following equation for x to the nearest tenth:	Quadratic Equations	1	912	Algebra	Level 1: Recall	0
MA.912.A.8.1	Define exponential and logarithmic functions and determine their relationship	Example: Find the inverse of $f(x) = 2^{x}$. Identify the domain and range of $f(x)$ and $f^{-1}(x)$.	Logarithmic and Exponential Functions	1	912	Algebra	Level 2: Basic Application of Skills & Concepts	0
MA.912.A.8.2	Define and use the properties of logarithms to simplify logarithmic expressions and to find their approximate values.	Example 1: Evaluate the following expression: log ₃ 81 Example 2: Simplify (()) Example 3: Find the value of ()()	Logarithmic and Exponential Functions	1	912	Algebra	Level 1: Recall	0
MA.912.A.8.3	Graph exponential and logarithmic functions.	Example 1: Draw the graphs of the functions $\int (x) = 2^{x}$ and $g(x) = 2^{x}$. Explain their differences and similarities. Example 2: Draw the graphs of the functions $\int (x) = \log x$ and $g(x) = 2^{x}$ and describe their relationship.	Logarithmic and Exponential Functions	1	912	Algebra	Level 2: Basic Application of Skills & Concepts	0

MA.912.A.8.4	Prove laws of logarithms.	Example: Use the fact that $f(x) = e^{i \pi i x}$ to show that $f(x) = e^{i \pi i x}$	Logarithmic and Exponential Functions	1	912	Algebra	Level 3: Strategic Thinking & Complex Reasoning	0
MA.912.A.8.5	Solve logarithmic and exponential equations.	Example 1: Solve the following equation for <i>x</i> : $\log_{1}x = 5$ Example 2: Solve the following equation for <i>t</i> : $\varrho^{t} = 2$	Logarithmic and Exponential Functions	1	912	Algebra	Level 2: Basic Application of Skills & Concepts	0
MA.912.A.8.6	Use the change of base formula.	Example: Write $\log_{10} 75$ as a logarithm of base 2.	Logarithmic and Exponential Functions	1	912	Algebra	Level 1: Recall	0
MA.912.A.8.7	Solve applications of exponential growth and decay.	Example: The population of a certain country can be modeled by the equation , where P(t) is the population in millions and t is the number of years after 1900. Find when the population is 100 million, 200 million, and 400 million. What do you notice about these time periods?	Logarithmic and Exponential Functions	1	912	Algebra	Level 3: Strategic Thinking & Complex Reasoning	0
MA.912.A.9.1	Write the equations of conic sections in standard form and general form, in order to identify the conic section and to find its	Example 1: Write the following equation in standard form: Identify the conic and find its foci, asymptotes, and	Conic Sections	1	912	Algebra	Level 2: Basic Application of Skills & Concepts	0

	geometric properties (foci, asymptotes, eccentricity, etc.).	eccentricity as appropriate. Example 2: Write the following equation in standard form:						
MA.912.A.9.2	Graph conic sections with and without using graphing technology.	Example: Graph the following conic sections: $1 - \frac{1}{4} + \frac{1}{4} = 16$ $1 = -\frac{1}{4} + \frac{1}{4} = 16$ $1 = -\frac{1}{4} + \frac{1}{4} = 16$ $1 = -\frac{1}{4} + \frac{1}{4} = 16$	Conic Sections	1	912	Algebra	Level 2: Basic Application of Skills & Concepts	0
MA.912.A.9.3	Solve real-world problems involving conic sections	Example: The planet Earth orbits the Sun elliptically, with the sun as one of the foci. Given that the length of the major axis of this ellipse is approximately miles and the eccentricity of the ellipse is about 0.0167, find the smallest distance and the largest distance of Earth from the Sun.	Conic Sections	1	912	Algebra	Level 3: Strategic Thinking & Complex Reasoning	0